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PART I

The several statistical approaches to tho problem or
signal dotoctability vhich have appeared in the literature are
shown to be essentially equivalent. A cencral theory based on like-
lihood ratio embraces the criterion approach, for either restricted
false alarn probability or ninimun woightcd error type optiln, and
the a postericri probability approach. Receiver roliability is
shown to be a function of the distribution funAticna of likelihood
ratio. The existenco and uniqueness of solutions for the various
approaches is proved under gneral hypothesis.

PART II

The full power of the theory of cipl. detectability can
be applied to dotection iz Gaussian noise, and several general r -
oults are given. Six special cases are considurod, and the
expressionn for likelihood ratio are dorived. The resulting opti-
m receivers are evaluated by the distribution functions of the
A:,ellh,od ratio. In two of the special cases studied, the uncer-

L.' 2 -.e.o algrx ensemble can be varied, throing some light on
the effect of uncertainty or probabilit) of detection.
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TME MIY CF SIGNU~ MMrA*BILTY

PART I. THE GEflERA THE CRY

I SS, MD S EPAI.ETIY:

1'ART II. APPLICATION[S WITH
GALT'SIAfl NOISID

1. Conceptsa nd Thooretical RBulto

1.1 Inrducti=~

Random intorfeorenco plays the key roleo in tho thc:r. o! oiQitil dctec-

tability. It not only V~acoe a limit on the onor~j which a signal m1:st heyvo to

bo detected reliably, trit it alo' limita 1,1-o bandwidth of a receivor for strongC

oignagLn, or generally the var'iety of signls wrhich can bo dotectod consistently

in a given roceivor. Part I of this rcport presents the basic theory of detecting

airnalo in ra~re=o intorfcronve" JnM ~rt 1I alpplion it to c=- aim=Ploj~cc

design and evaluation of receivers. -

The signal detectability problem is represontod schematically in

Fig. 1.1. The oporator bas available a voltage varying with time, which will be

referrod to as the rocoivor input. This voltage is in some way different vl4' n

a ignal io preoont from when thore is noise alonc.

MMpP 2 =4
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TRANSMITTER11 NOISY CHANNE EEVROEAO

RICLIVER
INPUT

FIG. 1.1 . BLOCK DIAGRAM OF SIGNAL DETECTION PROBLEM.

The receiver is the opratorle tool or analyzinjC system, it cnabloo him to otudy

the input to tho receiver by observing the recoiver output. lie can use the

receiver input to his advantage only if' (1) the rocoivcr Input is different

when there is a oi~nal than when there is no signal, and (2) ho kniows ornough

about the oi.Gialo and the noise to analyrze the input sc ae to recognize the dif-

ferenco. The opertor can do better than random -uessine in dec itling whether or

not them Is a signal precent on~ly whon he has infox tion about the eignalo,

the noise, and hie receiver; thio must be recognized before treatingj this prob-

lam. The informationi about the oi(t2.1 and about the noise is usually of a

statistical nature b,-causo of the rand=m nature of noise, and the uncorlainty as

I Ult~o exact sairml that will be tranaLlitted.

Siguxl detectability has boon recognized ao a~ otatiotic.. ream by

a nan.')er o~f authors. 1There have been two distinct approaches to +i pt !'Aom.

The .1irat, the cr't--% ,, )pro'A..h, f'-; *. Tpron-L~ i~n fu l Signsby

. L ;uc and G. I. Uhionbock. The second, uoints a poseriori probability)

1156usoi and Uh3.enbeck, Ref. 1; Woedvard and Lavieo, Rofe. 2, 3, 14, and 5; Ileich
rind Swzrling, flazX 6; IXiddlotcmx, Ref. 7; Slattery, Pet. 8; Hance, Ref. 9;
chvaxz, Ra~$. 10; Horth, Ref. 11; X~plan and Fall, Pot. 12.

aova..;l Uhlonboc~.., Roy'. 1.
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iro otudicd by 1'. M. Woodtward and I. L. Davioo. 1 Jhe diffordncu Letween the

two methodo loo mainly in the approach. Both are presentod in this report,

and the very close connection between the results of the -wo will be demonsrtmod

in Section 2; namely, the basic receiver required can be the came for either

caoo, only the final manner of analysis and presentation of the output is differ-

ent. The criterion approach requires less of this analysis, and heo been given

more attontion in this report because it is sonewhat eimpler.

1.2 Dtetability Criteria

Suppose the operator is required to guess whether or not there is a

oignal present. He will, for certain rece..er inputs, say that a signal is

2
present. Such receiver inputs will be said to oatisfy the criterion, or 

tn be

in the criterion. Those receiver inputs which load him to guess that there is no

signal present are not in the criterion.

There are two distinct kinds of errors which the operator 
my make.

He may say there is a signal present if there is only noise; this is a false

alarm. Is may say there is only noise when signal plus noise is present; he

misses the signal. One of these errors may be more serious than the other, sc

that they must be considered serarately.

it will be convenient to use the ordixnary notation of p---lb l ty

theory. Events will be represented by letters, and in particular, the following

symbols will be used for the following events:

iDavies, Ref. 2., and Woodward and Davies, Ref. 3.

,e shall assume the operator is scientifically logical, i.e., 
for the jame

receiver input he will always give the soame response. An alternative approach

i described in Appendix A.

°.5
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SN There i sinal plus noise

N There is nciso alone
it The operator onayo thorc is a sict 1  ~. h rcio n~

is in thc criterion
CA The operator sayc thoro Li only noise, i.e., the rcccivcr

1 11,AL is not in, the criterion.

if 2 and C arc evcnts, P(B) is the probability of occurrence o0 cvent

B, P(B.C) is the probability of occurrence of events B and C together, and 1'z(C)

is the (conditional) probability of occurrencc of event C if cvolt B is knouw,

to occur.
From the stat~stical informtion given about the si~rl and the intor-

ference it turns out to be convenient to calculate P1I(A) and PSIj(A), because

these quantities do not dopord upon th. a priori probability that a siGnal 1s

prosen. This will be done in Part II of this r-port for some intorostinC casec.

If these probabilities, I1 :(A) and PS11. are given as well us p(SIi), the a priori

probability that a sigmal is present, then tlo probability of any combination of

the events in this discussion can be calculated. In fact, any throe (alcbrai-

cally) independent probabilitioo can be used to calculate all the others. That

there are just thre independent probebilitios can be cen by

noting that all of the eoonto discuosoo are cocilnationo of thj four ovonts 1:.A,

IN.A, SH.C., and U-CA, and any probabilltios can be calculated from the probabili-

ties of these four. But the sum of the probabilities of those four Is unity, so

ony three ot these are independent. Thus, for examnle,

P(SH'CA) - P'si) PS1 (CA) = P(SN) [ 1 - r 1 (A)(

P(A) a P(SN.A) + P(N.A)

P(
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An an alternative to requirinC the )perator to say whether a signal is

, it ,, uL, the operator ri&ht be aoaed what, to the boot of hin jiowlodgo,

i th- probability that a ni~ial in present. Thin approach hMs the advantage of

Ccttin ore inforiation from the receiving equipment. In fact Woodward and

Daviec point out that if the operator makes the best possible estimate of this

probability for each possible transmitted mcssage, he is supplying al the infor-

mation which his equipment can givo him. The mothod of making the beat estimate

of the a postoriori probability that a sipral is present will be discusscd in

this report. A good dhocussion of this approach Is also found in the original
2

papers by Woodward and Davies.

It is shown in Section 2 that the a po3toriari probability is given by

the fclowing equation:

p(31; 1 -Q C( P(S17 k.2
Exj P(SN) + 1 - P(SN) t1.2)

where Px(S!) is the a posteriorl probability for the receiver Input denoted by

x and .(x) io the likelihood ratio for the ame receiver input. Likelihood

ratio for a particular receiver input is usually defined as the ratio of proba-

billty density for that receiver input if there isiGnal plum noise to die

probability density if there is noise alone. It is a measure of haw likely that

receiver i miut to when there is o -- l pluo noise as compared with i ,en there is I

noise alone. It In a randoo variable; its .mlue depends upon what the receiver

inpu.t happens to be. If a receiver which has likeliho:xld ratio at its output

1?cf. 3.
2, 5, 4, and 5.

4 V '
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can be built, and if the a priori probability P(SN) io known, a pootcriorl proba-

bility can bo calculatod casily. The calcuiation could be built into the ru7cuvt'

calibration, making the receiver an aptimum receiver for obtaining a poateriorl

probabilV ty.

1#4 Optimmu Criteria

An important question is whether or not it is poseible to find the

optimum criterion for a given situation. A first atop toward the anower io to

define what is meant by optimum, and this definition depends upon the situation.

It my be possible to put a numerical value upon the correct responos and a

nmerical coot on the errors. Suppose

VSNA Value of the correct rooponse SN.A

Vii.c A  - Vhlue of the correct response N.CA

%NCA - Cost of the error SNCA

KN.A - Coot of the error N.A

Then

V V8N.AP(SN.A) + VNCAP(N.CA) - KSIICAP(SU.CA) . K.AP(.A) (1.4)

is the expected vitlue of the response of the equipment for a given criterion.

An optimum criterica than would be one which would maximize this expreosion.

Slate the later Ootdiona will calculate PN(A) and PSI;(A), it will be an advantaGe

to express the expected value V of the rcponao 111 terms of these quantitios,

V aV 11 AP(Sl) PsP(A) + 1 C1. P()] [1 - P(A)]

-KSIICAP(SN) 1 1 - PSI,(A)] uAl-Ps1]P~A

V , PSI (A) P(SI?) (VsIJ.A+ KSII*C) - ?,(A) Il - P(SII)} (VII1*A + KIIbA)

+ V11  CA - '(S1)] - ;NUCA P(3").

6
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mihuo fhximizing V ia ,quivalont to requiring that

Ps3(A- (A P (A) is a maximum, whore

(1.6)
o -P( N) ("If-C + "N.A)

P(TSN) (VI.A+ KNCASASN. CA '

Note th1at P(SN) -s the a priori probability that there is a si~al present.

In another caso it may be requtred to limit the probability of v false

alarm and to minimize the probability of a mlsaeo. signal with this restriction.

In symbols, it In rAqcuirnd that,

P(11.A) I Po
(1.7)

P(SN'CA) is a minimm.

This also cn be expresoed in termn of PN(A), PsNI(A)p and the a priori probability

P(SN):

P(N.A) - [l - P(8N)J PN(A) S Po, or PN(A)S k - 1 - PN) md

P(SN.CA, P(SN) [1 - Psl(A)] is a miniom, i.e., PsI(A) is a maximum.

1.5 Theoretical Romlts

Both of the above problems of findine an optimum criterion will bo

discussed in later sections, and it will be shown that under very general

" conditions both probl3ms have essentially the same solution. The optimum cri-

toron cottsisto of all rocoiver inputs with likelihood preator than some number (.

For the first type of optimu criterion, ( is the parameter in Eq. (1.6), and for

the second typo of criterion, ( can be determined from the value of the parameter

k in Eq. (1.8). It has al.eady been mentioned that a posteriori probability is

the simple function of likelihood ratio given in Eq. (1.2). Thus a receiver which

could calculate the likelihood ratio for each recciver input can be uod as an

S,untoriori probability typc receiver or as either of the criterion type
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r .. ivoro. Part II o: this report, which treate somo specific Caoon, deals

only with the likelihood ratio.

1.6 Receivr Evaluation1

Usually a receiver is judged on the basis of probability of falue

alarm if no signal is sent, i.e., PN(A), and the probability of detection if a

signal is sent, PN(A). The reliability of any receiver in any given situation

ct- be sum-arizod in one graph, called the receiver operating characteristic, on

which PsN(A) is plotted aginst PN(A). For any criterion and any fixed set of

eipals, there is fixed value for PsN(A) and a fixed value for PN(A). Thus the

criterion can be represented : t point on the receiver opurating characteristic

graph. A critorion-tye receiver ray operate at aW level (i.e., any value of

or am, value of K), and hence io represented by a curve. Two types of ol.. 4 hum

criteria have been discussed, and the graph points up the rolatin between

the two. In Fig. 1.2 curve (1) is based on optimum operation for which PSN(A) is

maximized for PN(A) fixed. Thus, no receiver can operate above the fir't curve.

The third curve is a lower limit in operation founi by rotating tho optimum

curve about the center point of the graph; it would result if an optimum receiver

operator minimized PsN(A), i.e., said no whenever he ohould say yes, and vice

versa. No receiver, no matter how poor, can be made to operate below the third

curve. The diagonal could be achieved by turning the receiver off and guessing,

in which case PsN(A) - PN(A).

In the next section it will be shown that the derivative of curve (1)

sketched in the lower plot, is the operating level p of the optimum receiver;

that is, if the elope at some point is , then the correspondinL optimum criterion

0only evaluation of criterion typo receiver is discucacd hero. Evaluation of an

a postzriori probability typo recoiver is considered in Section 2..

_ _ _ _ _ C _
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ia made up of all inputs which have likelihood ratio Eroator t'%n or equal to I).

The relationship botween. the first and second types of optimum criteria is

graphically illustrated in Fig. 1.3. If at any point (PN(A), PSN(A)) on curve (i)

a line Is drawn with elope 0, it will be tangent to the curve and will intersect

the axis at the value PSi (A) - 0 ?i(A) . This is the quantity to be maximized

for the first typo of optimum criterion, and if a lino with the same elope is

drawn through any other point on or between curves (1) and (3), it Vill cut the

axis baloy the point wherc the tanGent cuts the axis. Thus, curve (1) is not

only the curve for the optimum of tho typo uh-it P1N(A) is boundod and P s(A)

maxinized, but also tro curve for the optimum criterion when values ara placed

on the operator's responses.

A non-optimum receiver can be evaluated in a given situation if its

receiver operating characteristic is drawn together with that of the optimum.

one receiver in bettor than another over a range if it is clooer to the optimum

than the other. In come Instances the optim curve for a given situation will

nearly match another receiver's operation In the same eitu&tion ez -pt that the

optimum will require less sigial energy. In this case, the non-optimum receiver

can be given a db rating for that situation.

Each application of the theory treated in Part II of this report is

accompanied by the receiver operating characteristic of the optimm receiver.

_ ---- 11_
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2. MATM1EZlAICAL TMEORY

2.1 Introduction

The method for handling the signal detectability problem ma~thematically

is described in this ection. The first step is the presentation of the appro-

prie.~e mathematical description of the signalo and noise. In those tevna tho

signal. detectability problem is restated in several forma discussed i.n Section I

of this rep irt. It is then shown that in each case, if tlse likelihood ratio can

be determined for each receiver input, the problor. la essentially volved. Thus

the conclusion is that the receiver design problem should bo treated in terms of

likelihood ratio, this is the approach used in Part II.

2.2 Vhteslatical Description of 8±.&mls and Noise

Any receiver input, noisc or signal plua noise, is a voltaGe which is

a funotion of time. Thus ve shall be considering a sot of functions. In this

report it will be assumed that the receiver input Is limited to bandwidth W, and

that the observation is of finite duration T. By the sampling theorem, iany

Bueb i~mcticn is ccmzltely determined when its values at "sampling" points spaced

12W ascends apart throughi the observation Interval are known. Thore are 2W!'

sampling points in all. Thus a receivor input cen be considered as a point in a

2WT dimensional1 space, the values at the sample points beinm tak~en as coordinates.

Let us call the space R.

If there is noise at the receiver Input, the receiver Input voltago

may usually be any of an infinite number of functione, i.e., any of an infinite

number of points in the 2WT dimensional space rj. With Gaussian noise any point iD

'S1-.nnon, C. E., "Cctmunication in the Prooonce of Uioiu,"' Proc. flU1, vol. '

p. 10, Tanuary 194~9; alo Appendix D of Part II.

12
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theoretically poooible. It is a matter of chance which one occurs. Thus it

appears that the appropriatu way to describe the noise is to give the probability

donsity for pointo, in the apace of receiver inputs. The same is true when thcre

is slanal plus noise, so that we shall deal with the space R and two probability

density functions, IN,(X) for the case of noise alone, and fSN(x) for the case of

signal plus noise. Hers x denotes a point of the space R.

in a practical application, information will be given about the signals

as they would appear without noise st the receiver input rather than about the

signal plus noise probability density. Then f. 1 (x) must be calculated froms this

Information and the probability density function fN(x) for the noise. The noise

and the signals will be assumed independent. If the signals can be described by

a probability density function f,(x),

fSNj(X) Uf fN,(xa) %8(a) do (2.1)

R

whoro the integation is over the whole apace R. The receiver input x(t) could

be caused by any sieal s(t), and noise x't) - s(t). The probability density

for x is the probability that both a(t) and x(t) - s(t) will occur at the same

time, summed over all possible s(t).

If the signals cannot be described by a probability density function, a

more general form must be used, in which the signals are described by a proba-

bility measure, PS; the formula for this case is

This is what is called a Loboague integral, and it moans essentially to average

sic onall asounc that the probt.bility density tfunction exists. Sco Appenlic A

!J
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f (x-s) over all vului.i of 1 in the whole spaco woighting according to the

probability PS of the points a appoaring aij oirpals.

2.3 A Posteriori Probability

The axpproach of Woodward and Davies2 to the signal detectability

problem is to ask the operator, 'What is tho probability that a sipal is pro-

sent?" He is to give the probability, using knowledge of the receiver input,

i.e., he gives the a poteriori probability.

If the probability density functions are continuous, the a posteriori

probability Px(SN) can be fotmd for W particular receiver input x. Bayes'

thor, is used, but not directly, since PeI,(x) and P11 (z) are both zero.

Co.sidar a am]l sphere U with radius r and centor x. Thon Pu(SN) can be ob-

talined by Bsyes' thoorem, and Px(SN) can be dofined as the

1 (8) . li Pu(Sl) . (2-.)
r-*O

Denote by P(SN.U) the probability that signal plus noiseo will be present and

the receiver output will be in U. Then

P(sH.u) - P(SX) • P 11(u) - Pu(sN) • V(U) (2.4)

and

P(U) - PSN(u) P(ON) + Pn(u) (. P(sm)) (2.5)

Solving J."rPUS)
P(MI) PI(U)

Pu( tm) P(P?) PsN(u) + [l - P'SU)J PN(U)

P(811P) + (sl1)

le P1u (2.6)
~~ +SN (W -+(S

11
iCror, Rof.14, pp. 62, i88. 2 Woodward and Davies, Ref.3 Camr a'Ifp''

'|. , '_ _ _ _ _ ~
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13y the definition of probability density function,

PsI(U) j £SN(x) dx

'If (U f fl; -72.)
U

whore tho intoiral is really a multiple integral over the volume of the sphere

U in the n-dimeneional space. Then d

f fSN(x)dx PSI,(U) U 12.8)

tnd if ftj(x) and fu,(x) amr continuoua,

i Pm (U) fs3 (z) -(.(x) (2.9)

The ratio of probability densities f%1 (X)/fN(x) - . (X) Is called the likelihood 3
ratio. It followso that

Pi gm)) k' (210
r-.3N) - Pu(SN) C P<s) e(X) + L - P SN.:o)

This is the existence probability as defined by Woodward 
and Davie3.

1

Notice that the !i4-!iheod .t4. L- ,) i the al -important quantity. P,(SN) in a

simple monotone increasing function of the likelihood ratio. Therefore if P )

Mnown and if the receiver produces 9(z), a calibration will convert this to P,(SN).

2.4 Criteria an4 the Optimum Criteria

2.4.1 Definitions. Suppose the operator is only required to guess

vhether or not there is a signal present. For certain receiver inputs he vili

,neos there is a signal present. These receiver inputs form a subset of

.... ~
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the apc or .1 pooiblo recoivur inus Lo us calli tniio subset the

criteron and donato it by A. Thttt is, a point x in in the criterion A i.f thc-

IOperator ,ill nay there is a oignIb. pr-~cnt when x occurn as receivr input

I It vIU be cowenient. to have a uynbo3. for each or the two typc3 ofIOpti= criteria dcacrltbod in Section 1.14. The first type- uill be denoted by

I A1 (t(3); tb--t -1Io ,(0 in any stibaet of 11 such that for fixed (3 0,

PS.,, "A, (0110)P.i~ ic =zma (2. 1.1)

Th6 GeOCn(I -tpe -.eU be denoted byv A.k) that io A (k) is any cWbot of Rl
Such tkat

The ikoljhnod. -t z .I;:% %dih is 4 sfinod noc ratio of *,he proba-

___ __bility d mn si -., !%mtigw , '.rjf f ) pl y t an i mpor, t ro e in th e f oc v n r

mmL8r fhwI-c MOMian lik1 thecever In- -t ictob

* ~~if tb- e Is iil plu. n~oise tflS" - +.here is ai ~ ro

2,4,2 Thaotza a- gpti C'±ter±'.;. ThO OPtimMn isiv.,± r-e c3.y

I related to thj. I ikelvs-va ratio. ror tia first typo or critcrion the cozmoction

i IV=n by t: 6 fo i~vLn. thnorev,

V= As(n OPtirz.m cr~l~tImoA, (D).

Proof: Tb~a ccaditicn that A he an optain crit- -Cr A, (f3) in

that P28 (A) - (3 P(A) i fa; 1-e., for any ocher set B of

reci~'!' npu~ P 1 (A -13 P..(A) t P~j.(1,- (13).r1



ENGINEERING RESEARCH INSTITUTE • UNIVERSITY OF MICHIGAN

PZN(A) - 13 Pjj(A) - r SN(x) dY -3 f fll(x) dx
A, A (..:,)

AA
f [ fS (X) fl, C(x) ] dx

whore the integrtion is over the aot A, and v, is real.y a multi-

ple intogral orer a part of the nl co R which hus 2Wr dimensions.

Lot B bo any at difforont from A. Denote by A-B the aet of

points which axe in A und not in B, by B-A the set of points

which aro in B but not in A, and by BOA the set of points which

belong to both A and B. Then sLnce A is the uwion of A-B and

A0B, ant A-f and AfB have no points in comAo,

-SIA ?,;1 (A) af [fj iH X) f I f(x)]I dx
A

f f[ l t(x) -3 fn (x)] dx(2i)

AnB

+ f[fs(x) - P fn(x)] dx

A-B

i- 3 r,,(B) f[ I(x) -1 f7(x)) dz

AF-B

+ f [f 8 1 (x) - f,() dx

B-A

Thus

PSuI(A) - 3 PN(A) - - P1 1(B)

f fsll(x) f f(x)] dx - f,,, (x) f W 1 lx) dx
A-B B-A



4"4

ENGINEERING RESEARCH INSTITUTE • UNIVERSITY OF MICHIGAN

Tho points in A-B aro in A, and so for the 1, 11 (x)/fI(x)

.Z(x) 2! 0, so that fSf(X) - '3 r (x) o, and tho firat into-Ix

in Eq. (2.16) is not loss than zero. The Ioiio in tlio set B-A

are not in A, so £sl(X)/fN(x) c , rmd the second integral in

Eq. (2.16) i no greater than zero. Thus

Ps1{(A) - 3PII(A) : 1SI(B) P if (B) , (2.17)

PS".(A) - 13 P (A) is a mximum, and A is an optimum criterion Al(.3)

There is not a unique optimum criterion A ($) • In the first place
1

"optim"w .as definOd in terms of probability. Thus a chango in AI(() which

would not change P., [A 1 (p)] or P. [A 1 (p)] would result in an equally cood

criterion. Such a change might consist cf adding or taking out a single roit,

a finite number of points, or gonerally any sot of probability zoro. 1  More

insight into the uniqueness is given by the following theorem.

Theorea 2: If A is an optimum criterion A1 (P), then the set of points in A for

which e(x) < has probability zero, and the st of points not in A for which

-e (x) >3 p A probbility zero.

Proof: We will show that any criterion which does not have those

two properties is not an optimum criterion. Consider any cri-

terion B with a subset C, of non-zero probability, such that the

likelihood ratio of each point in C is loss than 1. There is a

positive number t and a Dubset CE of C, having no'-zorc probability,

such that -9(x) 5 -" for the points in CE . I this ucro not

trim, then for any positive smll number c , the subset CE would

have probability zexo. Theso subsets C re monotono, that 13,

"A a-t £ will be uaid to have probability zero if both P ,,(£ m and p, ( ) .... .,

" T- - --- ,- _

g4
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If IF <fl thaiC~ contains Ci and, sinco C cofltai.l fO

points with likelihood ratio e~qual to (3, tho union of aiJ. Cc ie

itjoJA', and woul~d have probability zero.

As in Eq. (2.14'),

PSN(y)- 3N (Ce) -f (f,,,N(x .(fN(x)] dx -f f,,(x) [j(x) -0] d

and since C(x) :5 f-or e.(x) .. -

PSN(Ce) -0PN(Ce) S f f fN'x) dx F PN,(C,) . (2.19)

C4

Therefore, if P (C ) > 0,

PSN(Cc) A Pi P(Cc) < 0 . (2.20)

r j But Ce, in a subaet of A, and therefore

ard B3 in not an. A, 03i). It can be ahown in en cnalogous mnner

that if there is a sat D) of non-zero mmoure ouzta~de of critericn,

B ouch thate(x) > pinD, thon themia a abeotDg of Dsuch

PSN (De) -3 N (e) > 0 (2.22)

adtherefore

PSN(BvDe A PN(BJDE ) > P'SN() P110) (2.2.3)

and B is not an A 1 (B).

lortun6r, Ref~. 14, p. 50, Eq. 6..5; and P. 77, parnLgraph 8.2.

- - 19

JI
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This theorem says nothing about the points fcr which '(x) - P. It

is not hard to show that PsN(A) - 11 P(A) is not affected by including or cx

cluding points where X (x) - 1. Thus a criterion A 1(p) must include all points

for which e(x) > f3 (except perhaps a sot of probability zero), none of the

points where e(x) < 0 (except perhaps a set of probability zero), and it may or

may not include a point for which A(x) - 1.

In the mat general case, when the noise is Oauseian, the following

two theorem show the wmiquenoss of Al(o ) .

Theorem 3: If the probability density function for noise alono, f1 (x), is an ana-

lytic function, then the set of points for ich .x)- 0 has probability zero. 1

A funotion in said to be analytic if it is analytic in the ordinary

aensje when csid ered as a function of each single coordinate. The promf of the

theorem is quite involved, and so it is given in Appendix B.

Theorem 4 follows immediately from Theorem 2 and Theorem 3.

Theorem 4. If the probability density function for noise alone fN(x) is analytic,

any two optimum criteria A1 (P) can differ only by a set of probability zero.

Now let us turn tO the second type of optimum criterion.

Theorem 5: Lot A be a st ouch that if x is in , the likelihood rtio C(x) 2 p

wW'le if x is not in A, C(x) : A. Then if ?,,(A) * k, A is an optimum criterion

A2 (k).

Proof: An optimum criterion A2 (k) must satisfy the conditione

rN(A) S k, and PsN(A) is Mxlim.tm. The first is satisfied by

hypothesis. Suppose B is any other set such that p _ K.

Denote by A-B the set of points ir. A which are not in B, by B-A

A little morn In needed in the hypothesis for Theorem 3 than Liat f,,(x) 1
aialytic. Sec Appendix B.

---- ---- ---
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the aot of points in B wbich are not in A, nd by .At -ho act :f

points comon to B and A. Since A is the union of A-B and AOB,

and since A-B and AOB have no points in ccmiLv

N()- f f -(x x J f(x) dx. f f,(xdx
A A-B AB (2.24)

- PN(A-B) + rN(AnB) - k

Likevise

PN()-P N(B-A) + P N(AflB) :5k (2.25)
a-

and thus

P (A-B) ? P14(B-A) (2.26)N

Also,

FB.,(B-A) - frS(x) d (2.27)

BA

C, fsx(x)
and since aro point x in B-A is not in A, £(x) - 5 P( and

P8 (B-A) f f(X) f. (x) dx 13 f f,,(x) dx
S A  f-A 7 B-A

or

PBN(B-A) P 1 PN(B-A) (2.28)

Likewise

PSN(A-B) ? 0 P(A-B) . (2.29)

Collecting Eqs. (2.26), (2.28), and (2.29),

s(B-A) 5 P N(B-A) S 13 PNI(A-B) S PsN(AB)

21
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Aa in Eq. (2.24),

P SN (A) - f fS11(r I ff~ 3 . dx + f fsu(y) d&

A A-B AfDB

WPS~(A-B) + (2.51.))

P N()- P6jj(B-A) + PS(fB) .(2.52)

Thorefozb

Pr (A) - PSII(B) - PSN(A-B) -PS-(B-A). (2.53)

From gqo. (2.30) and (2.33) it foflowo that

P (A);! PSII(B) ~(.4

and P ,(A) is a flmxiUfl.

it follows from Theorem 5 that evury optimum of the first type, A1 (13),

is an optimm of the second type. More procisely, if oot A io an optimumi of tho

first type it is associated with the fixed p for whi~ It ie an A 1 (0). BY

Theorem 2, the likolihcod ratio In A 'Al not lone than 0, and outoido A the

likelihood ratio is not greater than f3, except on a not of probability zero. But

the introduction or omeseion of auch a set hao no offect on PSN (A) or P,(A).

Since PN(A) has ncme value, call It a; iill be an A (a) I;ere 5

Theorem 6: For every k between 0 and 1 there io an optimum criterion of the

first type Ak, ouch that P 11(Ak) - k.

Proof: For eCl value 03 we conlidcr tho inaxizril A1.(f3); by Theoroem

2 this 1s the net conciatin3 of all points of likoliho-'d ratio

not leas than 0:
M {x j (X) 2! D3 p.22
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Now if for k there is a a su,.h that PN(d 1 ) ( k, then bocause M _

is an A(O) the proof is comxplote.

Next we point out that 140 Is the whole space R and MCD is

the empty sot, and therefore P (Me) - 1 and PN(MCD ) 0 . For

any value uf h, if there is no l) ouch that PN(M1 ) 0 k, let

1*min {I3IP 1  ) 2 kj u g 8.b{fII1P,(MO3)< k} that is,

P11(1*) > k and if p > 13 , PjN(M.) < k. Thus the jump in P Is due

to those points in M * for which 1(x) a A*.

Because the probability onaity functions exiat, every point

has probability zero and therefore there is a subset S of these

points with 9(x) w 13* for which P - P1( *) - k. This is shown

in Appendix B (LIm= 4).

Removing this subset from MO*, PN(* - S) = k . (2.36)

Because 14 * - S satisfies Theorem 1, it is an AI(p*). Of

course, by Theorem 5, it is an A (k) also.
2

The following theorem completes this circle of proof.

Theorem_7: For any k hore is a such that overy A 2(k) is an An(ok).

rooff: Lot A be any A 2 (it ) .a

By Theorem 6 there cxiats a j3 and an Al(13k)1 whlch we vill denote

by A*. ouch that PT,(A*) w k. Thai by Theorem 5: A* is also an

A 2(0) and hence for both A and A*, PM, is mximum and P N -k.

Therefore

%-P(A*) = Ps.(A) (2.37)

PI(A) ,,k -Pl; (A) ,(2.'8

i~ult1lyinG Eq. (2.38) by - F. and adding gives

(1: . , /.. .

= k , .'  ;

I I5
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Since A* uximizeo this expreoaion, the equality must hold, and

A is also an Al(Pk).

In suwnry2 , theose theorems show that 0 can be written as a multivalued

function of k and that k can be written ao a multivalued function of P. These

relations can be sharpened somewhat.

Theorem 8: Lot a < b be ti'o values taken on by D(x). If no sot of the form

x < -(x < ~l or a < < 'e2 5 b ha. Irobdbility zoro, then 0 k

is a ingle valued function of k on some intrval 1 with a13 k 5 b, and

d P8sN(A(ik))/dk exists ed equale for every k in I.

proZ: 1) In i l if a function i monotome on an interval

&n. its rm4; of vo.uc is loo an interval, the, it is con-

ti-uone. 1 - 'i' eYo not, then at &= point the left and right

hand limits %ld bt , , which oulrd introduce a gap in th5

rapof vti3a% *a, cantradiotng tMo b~'pothen

2~I13. ;;, andif tho interm lfromAk, to\
$I k2

e2ots,!-r a subLintorval of r a; b of length gmater -;h= zero,

Stho i . > ki , Tlro am by Theorem 6, criteria of '.ho first type

A (for i t 1, 2)0 which, by TTorem 2, my 4 choson oo that Ai

COntCAXS all points for 4hlich .1x) > Pk and no points for which

S(A) < so A P .(A 4 ) - k , by'heorom 5. By applying

PT to the oqtioA, AU (A0 - A, .. z obtains

k,, -k + P.(A2 - A) If P.,,(A 2 - A-.) u0, then frcca Eqs. 2.7
-.rz t.le fact tAzt £(x) is bounded on A0 - l It followe that

% -(A2 A,) - 0 also. But, by hyPothet. o, Al A, cannot luv'

probability zero. Hence k, > kj.
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l ) Lot I be the ot of pointa k for which at least -'n"

f k is in tho opan interval from a to b, and let 1k denote the B

possibly multivaluod function defined on T. Then 2) Her thatI

is both single valued and monotone, an0 £heorems I and 6 imply

that the rwnge of valuos of P is the interval fron a to b,

Hence I in wn intorv.al, for if it were not, there would exint

throe values k < k < k3 vith only the middle one not in I.

Then 13l y,<1k and Pk2would not be in the interval

from a to b, yet the other two would bo--a contre.iction. Thun

1) can ba applied to pk and 0 k is therefore coutinuous on I.

4) To form the derivative, let

D a AI( 1) I( A) if k S ko

. Al(ko)- Al( k if k( ko "

Then

PSN(A (ok)) - PsN(Ai(1 0 )) PBX(,)
k -k +  k - o k -ko* k- ko

0

Since k 1,~ 13k: ,and in D, 0k 1(W) 5 0, -3kN

f811(z) :5 k fr(x). B~tI

-PS~f(DI) ,,, fs(x) dx fD~ ) Nx dx (2.144)
SD D

and

P, (D) k- k o 0 f 11(x) dx 4,>)
D

25 ----
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and thcrefore jP.(D) _< p s51(D) S o 1).,(D). Similarlv if k S

llm ~ ~k- k o0  ~o '

o

0

by virtue of the recult that 0k is a continuous function of k,

%k

2.t Evaluation of MIum Receivers

_ Tntroduolon. This section treats the problem of determixiin

how wol a given receiver will perform its task of dotocting orioals. .,or the

criteriom type receiver, the probability of false alarm if no signal is sent,

PN(A), and the probability of detection if a sienal is sent, PsII(A), give a

good measure of receiver performance. For the a postoriori orobability typo

receivers, the average or masn a posteriori probability with signal pl a noise 4
and with noise alone describe the receiver's ability to discriminate between

sig al plus noise and noise alone.

2.5.2 Evaluation of Criterion Type Receivers. For simplicity, let us

restrict this discussion to the case in which the probability density ifunction

for noise alone, fN(x) is analytic.

Denote by FSN(0) the probability that the likelihood ratio X(x) is

equal to or greatar than p if there is signal plus noise, end sirdlarly, let F( W)

be the proba'illty that I (x) is equal to or greater tha. 3 if there is noise

alone. These are the complimentary distribution functic;is for X(x). Then for

anyr A, 1 ),

PSN (A.(I3)) FSN(B), and (2..

i~~ PN (AI(0)) N '1

::2 7 ... .
Wk,
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'ecp.ioe the dot of points for which ."(x) . p, and differs from cuWi A, (p) only by

a out of probability zoro (Theorem 4). By Thecrcm 7, ovary A(k) is a AI(p). The

corroaponding to k can be found fr rq. (2. )

(A,(0k) - F(k1 - ( 2.9)

Than

PSN(A 2 (k)) - PSN(k) (2.5O)

Thus, if the dltr ibution functions FSN( ) n F( ) e , y

type receiver can be evaluated.

It turns out that not both F,,(O) and F(1 ) am necoesary. Theorem 8

states that

I d I*8N(D) ,(2.51)

aince FSAN~) F(ak), and k -a PFf( ThN io known, F 1(13)

can be found by integrting ! q. (2:51).1

7f71 of thf y~0H jdyy F7 (2.352)
i As an altmnative FS. (1) ml ,'t be given as a func-tion of 7 (0); this is t .e

r ei.r o- t,- ch-rat--+-tic_ . . _. T"'---, ca--b found.' 0 E (.5);*

i.e., a is the slope of the grph.

I'The chw-.ge -i ein is b cauza the fwnction0 Fg(P) and M-6 ccelimntery MOM

distribution functions. If the density functio n iated with FN(P) is g(o),

than d ) g() and F 3 g() d 0,

d13_ _7 ..

-4'
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A corollary of Theorem 8 is the follUowing; Tho nth monnt of the

distribution for noise alone ig the (n-l)st moment of the oi v'! plus noiee

distribution.

CD coco -
f yn d F N(y) y (y dy N (y) f y d F 3N(Y) (2.53)

As an eample of the application of this corollary, note that the 'man value of

likelihood ratio wili noise alone, in always uniy. If the variance with noico

alone is a N 2' the aecond moment of F (0) is I .. 0-2 ;t h eno h

eisl plus noise distribution is 1 + a"N 2 and the difference of the means ts

f2

• For detection corrnoponding roughly to Fig. 2.1, the difforence of the

means of the two distributions must be of the order of the standard deviation of

the distributicvs, so that

a- 0 o* , (2.54)
-N N

S - - - -FIG. 2.1

RECEIVER OPERATING

CHARACTERISTIC

a.-

0 PH (A)



ENGIN.-21NG RESEARCH INSTITUTE • UNIVERSITY OF MICH!GAN -

ir the variance of tho distribution with noise alone must be of the order of

unity. For btter dotoction, e 2 must be grater.

2.5.3 h)aluation of A Posteriori Probabillty Woodvard en- D-vioae I

Receivora. Davies proposes the nean a posterilr probabilJty as a 0.,,' of_I _
the efficiency of a recoiver. The vean a postoriori probability is defid an:

iLsl; (Px (SN)) " f e(s fsN,- , (1 (2 55 i

U H P.(S114) f (x) dx (2.56) 6

These can be eva.uated if the distribution functions F N(P ) anA F ( " for __l- -

hood ratio are known. Since M

P(SN) ( ) ( S) (2.57)P ,CsrON -e - (sz £X) + 1 P (sN)

the mean a posteriori probabilitleo e Iare

* .N.f.(SX) _ . d Fs(y), d 2.8)
x J P(SN)+ ( +

N(P S11) f -P(SY) '(Sr) dF N(y)

Davios preoonts the formula

s P'sN" + S"1 " [(s()S,]
JLr . P(S[ '. .

which enables one to calculate easily oither one of tho mom, a poeteriori probu-

i obilitien onco the other has been calculated.!-K

/4 29 - --

-. S
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it ien possible to couirs t:-e !nost co,=-'nI e~& t~~it'a.#Pproachea lo

Ithe thecry or aigua ottlctktility into one Tovnorel thaory, ir, tha theaory

-lklihood raitUc plaYa the cantrl rol:%: the reoult of tho thIeory irs thait a

______1*C6V~~built -o that i,.n oupu i ± s ho r_-tio ca~n be atdapted cauily io

~-C(10=114h the tUw'A- cpacif led D11 cly of the voU-knovi ftpp ofchtu to siguilJ

dztc-h4liy If tlW Probabi~lity din cribution uf lieio ftlo ±0 known,

Itharn tho r-ceiver ralimhil ±i~v m- bo lit-d

_______ Pax-. 1-1 of thi6 reot ,stio aad its Gstributim

--- ucton &aca~at i'f or 6, umbar or apecific uxzns and the prbasor

Iraccivardeiaa &iocusaed.

-~
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A.PPENDIX A

It wets assured throuGhout the discuaoion of the criterion approach to

oinl dotectability that for uny given receiver input, the operator would alwaYn

give the cam~ roonso.~ This i cortainly not the case witat threshold eign-ud

receiver input x, the operator would ey with probability 1)(x) *.hjt there is

aij~al pl.us roioe. FindL-Z. the optixmm receivnr would thor consisot of findine.th

optimm p~x). Thius approach does n~o' load to u.,y interestinxg new rea-ulte; if

p (x o.-x ar opt±im critoric-n and zero on itce ccimpliment, then p(x) ia

The thecoreoz @n sigal detoctasbi.ity ar prvli etinI nmr

Coer- for than has yet boon found nqcsap.;- I- an appication. H0LJvevr) they

car b-, goralizod souew.hat, w--d ti appandix diecumsee o: c the pC-tiabli-

I~it I certiiay P-esoiblo to consider more enera]., spaceso of eigijai9. A.7j

L.00.CO oh r.ic yxp±obbility meoasure can r.o d~ifiad niu~it bo used. In order to

jrr'--e thd th-,oremo --n optwzum civitoris. hwG*.vor, so--:o sort of likellhood ratio

I Isemsnecensar-y, o poosibi3-lty is to ml-l8WJ the P,- fA IA and the rwndcsm

'~.in-e £(xl mre 'q±ver -ul to de.S:L"ne i, ) tarxctigh zhe Iiteg~te-L

I A

-. mear VLuu of -muet be tunity, of course.

r qxtrjcec is . ,uclilean space of £Sinito dLmonioon, thon it icj poeoi-

o' *c fi -n .~ ,rb ItrrY m0P3are- throu _.,(,i rd r tr1bui Ion f uic t orn. Thca,
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-inci on8, being mcnotone, haw a derivative almost everywhere, E~nd hws 'ff

a moans of defining likelihood ratio. yor any point which hao mauur" Oe) ,'

llkelihood in tho ratio of the derivatives of the dintribution Aunctioi, for eia,

plus noise and -or noise alone. Points Vnich do not have measure zero can afravy

bO treated soearmtoly. There can be onLy a countable number of these and like-

lihood ratio for otch a point x can be defined as

PSN(Y)
Ps W (A.2)

Any point vith infinite likelihood ratio belongs in the criterion, of course, and

such a point has a posteriori probabill f unity. Than llkelihood ratio is defined

except for a aet of points of moagtre zero.

In any cea Y'er6 likelihood ratio is defined rad satisfies Eq. (A..),

,Theorems I 'ad 2 can be proved. The lamma (Appondix B, Le=sn 1) uhich is zheeded

for the M Wf of Theorem 5 can be proved for any spaco and meanure for which sets

I of arbitrmrily s= i euro can be found containing each point. If this holds

and liieaibood rtio is dafinad, then ThcoreMs 5, 6, 7, and A can be proved,1£

3C

tkis
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APIDX B E
This e&ppondix contains the proof of Thoorom .3and the lem& required to

complete the prouf of Thcoren V:. It is convenient to prove thr-ee ].e=o from

which Theorem 3 will follow directly.

Leumma 1: Let S be a uphore (i.o., the set of all points whose distance to a

fixed point is loss than or equal toN a rixeod positive ntunbr) in n-dimensional

I-uclidean opaco En. Lot f (x) be a continuous rtal function def ined on S. Then

the r'aph G - fly, r kx)JJI of f (x) In E nlhas (n+l)-measure zero.

proof: Lot the volumo (tho n-meacure) of S be V. Since f (x) ise uniformly continu-

Iotis or, S, for overy 4 > 0 there Is a 8 >0 such that iehenew'r the distance between

xand x2io loe thr-i 8 it follows that If (x 1 ) - f(X 2 )1 < ,/4V.

Moreover, for each 8 > 0 there is a deccuposition of ? into pairvise

dLisjoint congruent n-dimensiona1 cuben each with its 15reateat diagonal of longth

less thanl 8/2. :hiG decompooitioi may be chosen so that, if I{C} IJ - 1, 2p ... )k

are the cubes tnat touch S, then

I ~(volum C I) < 2V .(..

Thus I f(C±) is an intervul of length loss than 2 (4f/4V) - f /2V.

?;ow, let Ci*bo the (n4.i)-ouabe formed by tho Cartesian product C X I ; by

construction, the rraph G i3 covered by the (rvtl)-cubes Cf. Also

[(n+l)-volune C [(n)-volucio CilE/2VS52V. /2V - e (B.2)

I Yhun for each oF > 0 thereo is; a covortne of G by (n+l)-cubea whose total

'~~1 is lees than i This means (n+l)-neauure of G is c o
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LO.-2: Lot D be an open sat in Euclidean n-dimonsionll spacO E an. f(:) a

real function defined for all points x in D which hna continuous partial dorivu-

tives of all orders ouch that at each point x in D at least one part.Lal dcrlva-

tive (of any order) doec not vanish. Then, if b is some valuo takon on by f,

the set f- 1 (b) of all points x ouch that f(x) - b has n-measuro zero.

Proof: A point x in D is saxa to have "order zero" if come first order duriva-

tive of f does not vanish at x; x has "order r" (r a positive intoger) if all

partial derivatives of f of ordor 5 r vanish at x, but at loast one partial

derivatie of f of order r+l does not vanieh at x. By the hypotheses, every

point of D hao finite order.

For each integer r a O let C be the oset of pointslnf (b) of order
co r

r; then f- 1 (b) U U Cr. The theorem In proved if it Ls shown that the .1-maoure

r A

Of Cr is zero for each r. This will be dono in two steps.

I. At each point x" in C., thera is a sphere S(x*) centered at x" such

that S(x) n Cr has n-measure zero.
II. There is a countable collection fS(Xi)} , i 1 1, 2, ... , of such

spheres such that Cr is contaLnod in thc unin L S(x ).

Stops I and II torcther show that n-masuro of Cr is zero hocause

CD

0 S n-easure Cr n-measure [s(x)nCr a 0
i-l

Step I! is an application of the Lindcl8Pff theorom which asserts that ovary col-

loction of spheres contains a countable subcollccton whosc union is oqual to th,

union of all the oritinal sphores.

h
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The proo of I fuilowu:

Since x0 is of order r, one of thu dorivuxivos of order r of f(X), say

co (x), has a first order dcrivutive which does noL vinlnoh at x" By n change

In notation, this can be written aut: TT w o does not vanish at

n
X0

X* W (x' ... , X'n). The implicit function theorem can then be applied to Wt

yieldinG those results:

1) thoro is a sphero S(x*) cantered at x" and containeud in D.

2) writinC 7( for the projection of St;:*) onto the xl, ... , Xn. I

"coordinate plane," i -s an (n-1) sphoz.e. There is a real valuedI

continuous Aunction X(xl ... , Xn.)defined on v rhooe graph

o ff , ..., x1 , X(xl, ... , is the set of all poirto

x L-, S(x) ouch thiat w(x*) - w(x); that is ; " srx*)nw-1 [GU(r)]

Note: 2) a'v tha , In particular,

- w(x'). This is the uuual wVy of stating the theorem.

By Loen 1, the n-moeure of G is zero. Thus atop I in proved if s (x')nCrCG.

Case 1: r a . If x is in S(x')n co, then x is of order r - 0 and

f(x) - f(x*). But in this case w mist hav been chosen to be f, so W(x) W (x),

which implies that x iI in 0.

~Case 2: r > 0. if x in in s(x)n cr, then x is of order r, which

moao~u that in particular all r-ordor partials of f vanih at x. Hence re(x) - 0.

Also, by the se argAmnt W(x*) - 0, and w(x) w(x') implies that x i in

~G. This completes the proof of Itmsa 2.

Lcm__. If f(xx 2 , .. xn) is an axialytic functirn defined on n-diz.orcional

1 iuclidean apace En , and if P(S,S2, ... , Sn ) io a lx'obability measure on En such

a). t here n,.In n n hryltircd oct i',n .toso probability is unity, thvn

4-
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.(x , x ) - / E. xf-on) d(ni, '". sn) (!3')

existo and is analytic.

Prooff: Lot B be a bounded aot ouch that P(B) 1 1. Thon N, the clooure of D, is

such a sot aloc; it is certainly bounded, and it can be assigned the measure

unity, since

Bc:F em  - P(Bl " P(B) S P(E") - 1 (B.5)

The probability of the complcment of B is zero, and hence the inteation can

be restricted to the Bet I rather than to the whole of EP.

For a fixed ('l' ... , x ) and for ..' ' ) in B, f (xl -al ' ',

Xn-o ) iS bounded, since f is ccntiuous and B in closed and bounded. The

function f. is also moaurable, since it Is continuoun. (Ths assumea open nota

are measurable.) Then the intoeal exists. 1

The function fN(xl .. Xn) being analytic means that fN(x: ... , xn)

is an analytic function in the ordlrAry anoe when considered as a function of

any single coordinate x i . Lot us forget about the other coordinatee for the

present. Then fH(xi) has a power series expansion at each point xi, which

convergos in a nei&hborhood of tho point (x*l, 0) in the complex plane. Thus

fN (X) can be extended for cceplox values of x in a region containing the real

axis.

Formally,

"Craimir, Ref. 1i4, Section 5.2, p. 37.
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.in f f1j(xl1-0 1  '" xi+h-a,, "". Xn'") dP(l "..., nl)

~(B.7) B ff . xioi ... , X n-a n ) dP(0 1 , ... , On )

}L

- ji ~ f~dxo. .. ,X +h-a , .. i-a
1)111 i n n

B(B.8)

-h"fu(xll ... S, x-ol ... X- n, ) (.d9(), an)

( in Il(f ' -IXi+h-On .. In'a

- P0 (1)I

"f N(xl"81, ..., xio ..." Oi'xn-On) f<p( 11 ""' (Bn )

d-N "P("B' ... , an) (B.0)i

The Oy question now is whether or not it is permissible to iIterchange the order

Of integration and taking the limit of the differonce quotient at atop (B.9).

[This ia pormiaoiblo if the difforenco quotient covures anlifomly, which turns

out to be the case.

T function f 11(xi) is analytic in a domain which &xtonda to coplex

values of xi near the ro. &rxis. The function fR,(x, + h - a can be considered

as a function of h - ,. and is a alytic for complex values of h - a in a domain

containing tho real axis. Since Lhe valuea of 1 - (el, ... , an) in B are a

I clo~cu bounded not, and the valueo of h can certainly be uoundod, the set V of

- 3_

- - 44
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values h - oi is bounded. V can alao be taken as cloood, and it con be choon

So that no point o io on ito boundary. Then tjhro will be a minimm die ico

h10 > 0 from points a to the boundary of V. Conoidr the function

(83.) h) (xI olx+ h B ... x

., n, h f 6 . . ... n- Xn fl)

•x -a1"fNXl'l'  "'Xl- ' "'n On%

if h 1
1 o, and

N if h O a ,

defined for all points (h, a) with h a, u+iv and a a (el .. ,s) Of a CCnPaCet
±n

ubset of En +2 .  * ia therefore uniformly continnuos, and its convergence to[ h approachoo zero along sa comlox valued path is uni orm n_

the diffe-monco ctotint cnvrCoa uniform.ly.

Lam& Let fN(xl, ... n) be a function of a ccuplex -- r 2ablesari u

that for eac J, there is a dcmizl D I in the complex pla wnd a. nmbr h mich
oI

that the^ dcmnln Di coatatna, all Points within a distance of he0 of the real axis,
and fN (xl, .. , Xi* -... , xn) is a analytic fu~ctj of x i in Di for &11 real

v--Lu" or th otb cooralmates. Then, if P(el,.. n sapo lt

011~n the n-dimensional L-uclidoan space En,

/"" ) f f ( ". 'xit, ""o I nh p (o. a. (B.1)

l is analytic if it eXiots, 1

f ~ ~ ~ ~ ~ ~ Pc~u fNisbune, h itiga0=t.xa

M.- u ca.o.

rw.
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The proof will be omittod. The idea of the prcof in as follows, Ono

muot form the difference quotient for fsN(x1 , ... , Xn) for each coordinate X i

and show that the limit as h -0 0 exists, and is equal to what in obtained by

differentiating under the integral sign. The apace can be divided into two

parts ouch that one will have arbitrarily small measure and contribute an arbi-

trarily small amount to the integrals, while the other will be closed and bounded

and honco on it the ordor of integration and taking the limit as h-oO can be

intorchanged, as in Lema 3. The domain DI is required no that differentiation

in the complex plane will be possible.

11ow let us discuss Theorem 3. Suppoo fN(x) is analy-tic, -nd supposO

either Lo- 3 or Leni= 3' holds. Then fsir(x) is analytic, and their ratio

fAx)x

in analytic except whore f (x) - 0. This is a cot of measure zero, by Leams 2.

Since e(x) in analytic, the points whore Z(x) . 3 form a set of masurn zoro,

by Laema 21 This proves Theorem 3.

Theorem 3: If the probability density function for noise alone, f1 (x), is an

analytic function, (and if either Lemma 3 or Lemma 3' holds,) then the set of

pointe for which Z(x) - 3 hs measuro zero.

The restriction that Lom 3 or Lem 3' holds is not at al. serious.

If the sgals have bounded energ L= 3 holds. LOma 3'v woWd be expected

to hld for most analytic probability der-.ity functions, ain particular it

(1oou hold if the ioino is Gaussian.

.- te that LObocCue m anurt.. zero implies probability zero, since the probability
•in ' throub decnity ninction3.

________ - - 39)- - - .
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The follUowing loma is noeded to caMpiotuo to proUf Uf hlz'u1r u.

Lomma 4: Let V(x) be a probability density function defined on the n-dimennional

Euclidean space Z . Do.oto by P(A) the value of tno intccral f f(x) dx for aliA

subeots A of En for which the inte3ral exists. If A i0 any P-measurablo sot
0

whnao measure P(A ) ie finite, and if 0 < y < P (A0), then there in a P-

0} ~Masurabl sot Bo such that P(B o ) - .

The following proof makes the theoren .ml!d for any measure on any

apace M vith the property "C" defined below.

~Proof: Uhdor the hypotheses above. the measure P has a special property relative

to the space El.

Property '": There in a countcble clao [Ci , I - 1, 2, ..., of P-meaaurable

neot ouch that if x is a point and t > 0 then there is a Ci

containing x ouch that P(C1) <

One can obtain ouch a class by choooing all (n-dinen ional) spheres

of rational railu centered at points whose coordinates are rational. This

class is countable because the rational numbers are countable. It5 membera arc

p-measurable becauso f f(x) dx exists for any sphere A. That it has property

it" is a way of stating a fundamental property of intorlo.

Adr.. ,d Got B ".'o - union o£ a apuciai.

sequence [D1]of P-measuroble sets. Define D to be C1nA 0 if P(C1nAo) y;

othorwiso dofino D1 t-, bu empty. If D has been defined, defino D

Sn1 U [C+ 1 nA0] if P Dn U [Cn+lnA o] S Y; otherwise define Dn+l c Dn.

Since D n+ P ) P(Dn+) ' Y'. Hence the coquenco [P(D)] of real

numbers converges. A goneral pror rty of ,ncaoureo yields tho result that

) U n  1 in 1) (Dn Write D U " then P(B) - l (D ) <

V")

I. ____

-- - - - - - - - - - - - -
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, t r11ale to be Chown t)t p() . SuppoOe P(B) y; thnn

" .t , c , r-P(o) > o, one ja P(B) c, S ince P(%) < P(A), tor-
j ' oit .x in L b not l . fy p rpery "C", therc .Le soa Ck contain .ng

Y Such thatP(CL)e ltnttd it~ D If P ADL
then Dk wa~o dofinod to be D~, u[cI.OA.

0  fCklA ,]} S VD P r(C%) 5P (B) + 1,(Ck) y e) + e
Thus it wao tho cauo that C kfA CD =B. Nut C ki A contains a point x not In .
This contradicton shove tlat P(Po) in actually equal to y and not loe tbAn as[ ~Ima supposed.j

44
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AIMMI C

The ulloteui6 theory wan developed an Uw propmraticm of the text of

this report neared conpletion. The subject matter is appropriate to this report,

and so it is included.

The purpose of this material is to characterize uniformly best tests,
or criteria. If there are a family of signal distributions (or h-nothesee, in

statistical terms), and if a critericm A is an A (k) for each of them, then A is2

a unifcrmly best test.1  Theorem Cl states that If all distributions in a family

of signal distributins are k-equivalent, all optimm criteria are uniform beat

testa, and Theorem C2 states the converge.

Inn the first three cases considered in Part II of The Teor, of Sigmn

Detectabil'ty, the signal k exactly, the signal known except f-r 44.rior

phase, and the ignal a sam~ie of Vhite Gaussian noice, two uignl distributono

differing only in eignal energy are k-equivalent. Thus, by Theorem C4, a uine.

ditribution with ixed sial energy and one with the signa energy having nSarbitrnry distribution axe k-equivalent in these three cases. These three caser,

have for the boundaries Of their optilmm criteria, planes , cylinders, and spheres,
i' respectively. For th" othar A--" , !+ I---c.c lctd IeAabnai.

k-equivalence cannot be e=pected when energy is ciagecd.

Definition: If f (1) (x) and fSN(2) (x a rN (x) are defined on En. end if

there exists a set X of probability zero such that for any two points x ard y in

in En, but not in X,

(x) ()if and only 1if y 2 y
tian fSN)(x) and fSN ( ) (x) are said to yield k-equvalent ditribution.

'nn and Pearoon, Rof. 13.

}4
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Theorem CI: If fS (1)(X) and fSN(X) give k-equivalent distributions, then a

ciriterion is an A (k) for the first If and only if it is an A2 (k) for the second.

Proof: Suppose A in an A2 (k) for the first distribution. Then by Theorem 7j

there is a 0 ouch that A is a Al() . By Theorem 2, A contains all points for

which e(x) > 3 and none for which 9(x) < 0, except for a set of probability

zero. Except for a set of probability zero, if x and y are any two points such

that x is inA and y is not in A, then i(x) 1 11(y). By definition of k-

equivalence. there is a set X of probability zero, ouch that if x and y are also

not in X, L 2 (x) > e2(y). Then there must exist a number 2 ouch that for any x

except a set of probability zero, .2(x) . 02 if x is in A and A2 (x) 1 2

if x is not in 12. If follow, that A is an AI(P 2 ) with respect to the second

distribution. Furthermore, P N(A) - k, for either distribution since the proba-

bility density with noise alone is the sama for both distributions. It foullows

by Theorem 5 that A is an A2 (k) for the second distribution.

Theorem C2. If f 10(1)(x) and f (2)(x) lead to Wo distributions Lnch that for

every k, any criterion A is an A2 (k) for one if and only if it is for the other

also, then £Sn and fSN (2)(x) lead to k-equivalent distributions.

Proof: consider the family of sets 'V.wer - {xI.(x)t Ai' a and atakes

on all rational number values greater than zero. Each Ac is an A2 (k) for some k

with respect to the first distribution, by Theorem 5. Then it is for the second

also, by hypothesis. Each Aa is an A, [(a)] for s (a), by Theorem 7. For

each A(, the set of points C. ouch that x is in A and 9(z) < (a) or x Is not

in kZ and e(x) > p(a) has probability zero, by Theorem 2. Let X, be t1 union ic

fof all the nots C , and since each C. has probability zero, and the rational

• -nboro and hence the family C i countahla, it follows the the at X] M-ror -

3 -7.. -
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Neow ;connider U-t'. fmily of~ Gets

A n~.~ A, I IKx) 2:r)

derined f'or every positive real nunher r. Also define

c(r) A.u. b. 0 (ut) .)

all a-cr

Then for any point x not in Xl if y i~s in A r 2 (y) ?. 6(r). Also consider the

family of note3

A4~ r A113 r A x I~ {x (x) > r} (C.3)

defineod for every positive roali. number r. Tf x is a point not in X;and if x

is not in A j

all r*> r

For aniy va~lue of r a~t which g(r) is continuous,

all r* > r

An pointx which innot inX I nd for which .(x) "rin in A but not in

G~)~p(x ~g i) .e., / x~gr c.6)2~ 2'%

uit in) r an au .roe. t . Be O PoinoB 2x)Ije

*~cc~n icr,)ctathr b. 13r) ppo xg( BI andn 9

(C7)
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r'xico a~ nurbo' ;r Ouch that h(r ) < y < h* (r 0 . Define

C {x Ih(rQ 2) Y

I~~~ c. {j< -e (x) .-n*(r) c)

bohC, and r 2 have Probalabaty oroater tuijk zero, by Eq. (C.7). Now conoider

the acot A r - C 2 It is or. A2 (%) for the £rat Wltribution, by Theorem 5.

Clearly, by Theoremn 7 and 2, it ciunot be an A 2 ( for th(, second distribution.

The contradiction leads us to cornclus'ie List h(r) 0 h*(r 0). Theon fcr each

diocoxntinuity r 0 there exists a oat of probability zoro, say S(r 0 ), such that if
ro0 and x is not in Srex)-h(r.) Let X2  U S(r 0). Then

) I X,, line probability zero, since there are o.'ay a countable numlber of points of

j discontinuity ro. Now define N a- U X2, X alsoo has procibilit7 zero. Let the

I functior, h(r-) be defined aa foeUoo:

fh(r) -c(r) if g(-) io continuous at r(C9
Ih(r) m h(r) at r - r0,a discontinuity of g(r).

I The function h(r) 1W~a the following maopertie: (1) h(r) is a monotone
increasing function of r, and (2) if 11,(x) a r, and x is not in X, thenI i'~x) ah(r). 7)1e firet ,uaeertion i n obvioux" cc--cTcc of ti n in

E Kwhich h(r) is dofinedi, and the fact~ that g(r) is monotole The second assertion

has boen shown Dspaerately first. for points viv,*re G, a.nd hencelih, is continuous,

Lq. (C.6), secondly for the Points of discontinuity of h, in the preceding pea-

*X), an rI then ro >. It folows from the fact tnat h(r)

1(y)\ y x y

-rcIoebcenii ht1(, -I n ic ,x ~ n
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jI2(y) - h(r), 2 (x) ( Since X hae probability zoro, this complotes tkh

proof.

Theorem C3. IT (1)(x) in k-equxl t to f (i)(x) for each value of '.

between 2 and n, (or between 2 and co), and a i are positive real numbers such that

n (1)(D
ai~ (or a a~1),then f, s 1(x) and a ifSN Wx,1 1 i

c0

(or X i j N (f(x)) yield k-equivalent dstroutivn..
1

The set X (in the definition of k-equivalenco) for the distribution

given by the suo is ta2= as the union of the sets X for the individual diotri-

butionS. Then the proof Ja obvious.

Theorem C'+: Lf fm(a) Wx Is a coninuoue Punction of a in an interval [a, b]

if for any two numbers a1 and a2 , fS 1(6l)(x) in k-equivalent to fs ((x2)(x), and

if F (a) is a mootone function vhich is zero at the loft end of the interval and

1 at the right and of the interval, then

a

is k-quivalemt to any (a )

Proof: Choose a c0In the interval [a, b] Than for each ratimial value of

aIn the intrval1 [ a,1 b (a) (x) an f,(QO (x) are k-equivalont. There

is a bot Xp which has probability zero, uch that if x, y are not in Y

f(y) i and nly if La(X)> (y). The tion X of all , with

rational a also has pobability zero, since the ratinal num, ors am countable.

urthermore, if x and y are not in X, then >a(X)>e (y) for any rational wzdue

1ax)zcry forio any~~y andoa. e'--' tuf i irplio £ao (X)>ZI ao (y), and Xao( 'ao(y ) implies L (x)_ C:(y) fur

46 .
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all rational valuoo of c. Since fSN (x) to continuous in a, ea (x) rmat be
ccitinuous in a also, and it mist follow that for any real a 1z [a, b3 and for

ally X, v' not in x , 'ea(W a .4(Y) If and only if .e C W( ex) ~ (y). Then it is

e64y to shov that if x and y are not i X,
iat

b

ifand only if a0 (x),ze 0  ) ad hence fb flf(a) (x) dF(a) in oquivalent

to tsif (a )

o4

iI
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A The event "ITh OUmtOl says there is ei~r.1 plus noiae proacntp"
or a critorion, i.c., the set of recei's, nut orwic h

operator aye there is a gsii~iAl pro.det. ,Ipt o hc h

A1 (13) Any criterion A which maxiizea pSN(A) - p3 pl,(A)I, i.ea., In opti-
im criterion of the fit type. S

A2 (k) Any criterion A for which p,(A) I k, and P,,,(A,) is mlm, i.e.,
anoptinoto criterion of the socond type.

CA Th- event ' "Mo operator says there is nois s lcna.'j

d A parmister describling the ability of & re~aiver to detect signl..

BO E(s) The sigual enerey.

EnThe n-dinenai*w guclideau space.

f (X) The probability density for points x in R if there is noise alone.

fsN(X) The probabilityr density for points x in R if ther" Is sipnel plus
noise.

theme is noise alone, i.e., F H(0) is the -wobablity thAt the

critetr.on.

x X h ieiodmt ortemoIw1;-x !x



F, .(A) T'he probability that t-he operator will ay there iv~ ii7,W1 1L
noise If' there is ai(;r.L plus noinc, i.e, the probabilitY of
detaction.

1, Sri) The a posteriori probability tha. thorc ir, oiCflal pluo noise
present. (See Sections 1.3 a~nd 2.3.)

13.(O) Tho probability moacure defined on R for the set o: expected
signals.

FThe space of all receiver inputs. (The sot of all possibleo ir,-
nalo Is tl.e same space.)

A sigw. a(t), which may alo be considered as a point s in R
with coordinates (al 820 . an).

ZN Tho event "There In siea plus noisn."

Time.

Tihe duration of tho observation.

14 The bandwidth of the roceivo-r input..

C A receiver input x(t), which may, aloo be conaidered as a point x

A symbol usually ucod for the likelihood ratio level af cn ortitm=
-) criterion.

ASH" The mean of the random variable z if there is sirnal plus noise.

,~ (z) The mean of the random variable z if there is noiae alone.
7 H(Z) The variance of the randon variable z if there is noise alone.

21 The variance of likelihlood ratio if there ia noise alone.


